Trainee webinar 2022

“Scarring/ Fibrosis”

2 May 2022

4:00PM to 5:30PM EDT

This webinar is brought to you by the SkIN Canada Training Committee

Speaker Bios

Boris Hinz PhD

Boris Hinz is Keenan Research Chair in Fibrosis Research at St. Michael’s Hospital and University of Toronto Distinguished Professor in Tissue Repair and Regeneration. He is appointed with the Faculties of Dentistry, Medicine, and Biomedical Engineering.

Dr. Hinz holds a PhD degree (1998) in Cell Biology and Theoretical Biology from the University of Bonn, Germany. From 1999 to 2002, he was postdoctoral fellow with Dr. Giulio Gabbiani, Department of Experimental Pathology, University of Geneva, Switzerland. Dr. Hinz then moved to lead a research group at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, joining Cell Biology, Biophysics, and Bioengineering. He was nominated Maître d’enseignement et de recherche (Assistant Professor level) in 2006 and moved to the University of Toronto in 2009 with Associate Professor appointment in the Faculty of Dentistry.

Dr. Hinz is secretary and inaugural board member of the Canadian Connective Tissue Society, board member of the International Dupuytren Society and the Canadian Dupuytren Society. He has been president and board member of the European Tissue Repair Society and was board member of the Wound Healing Society. He is Editor-in-Chief (basic science) of the journal “Wound Repair and Regeneration”, Section Editor of the “Journal of Investigative Dermatology”, Associate Editor of “Biochemistry and Cell Biology”, and editorial board member of “Matrix Biology”, and ‘Experimental Dermatology’.

Dr. Hinz studies the role of contractile myofibroblasts in physiological tissue repair and in causing pathological tissue fibrosis. The findings of his lab are published in peer-reviewed journals, including Cell, Nat. Mater., Nat. BME, Cell Stem Cells, Nat. Med., Nat Commun., Science Sig., Curr. Biol., J. Cell Biol., Stem Cells, Cell Reports, Stem Cell Reports, J. Clin. Invest., Nat. Immunol., PNAS, Cardiovascular Res., J. Cell Sci., Biomaterials, Biophys. J., Am. J. Pathol., and the J. Invest. Dermatol., receiving >19,700 citations with an h-index of 63 (Scopus). He published 142 peer reviewed articles, 15 book chapters, edited 2 books, and was invited to >290 seminar and conference talks with >330 congress abstracts.

His research led to the creation of two startup companies specialized on anti-fibrotic coatings for silicone implants and novel “soft” cell culture devices. Dr. Hinz’ research is currently funded by a multi-project Foundation Grant from the Canadian Institutes of Health Research (CIHR), CIHR operating funds, the Canada Foundation for Innovation (CFI), the Ontario Research Foundation (ORF), and MITACS (Mathematics of Information Technology and Complex Systems).

“When Myofibroblasts Get Under Your Skin”

Tissues lose integrity upon injury. To rapidly restore mechanical stability, a variety of different cell types are activated to become myofibroblasts. Hallmarks of the myofibroblast are secretion of extracellular matrix (ECM), development of adhesion structures with the ECM, and formation of contractile stress fiber bundles. Rapid repair comes at the cost of tissue contracture due to the inability of the myofibroblast to regenerate tissue. When contracture and ECM remodeling become progressive and manifest as organ fibrosis, stiff scar tissue obstructs and ultimately destroys organ function. Pivotal for the formation and persistence of myofibroblasts are mechanical stimuli arising during tissue repair and chronic presence of inflammatory cells.

After a brief overview on our current projects, I will develop how mechanical factors orchestrate the development of myofibroblasts in a persisting wound environment – using the foreign body response to implanted silicone materials as an example. In a nutshell, modulating the stiffness of their surface reduces fibrotic encapsulation and enhance the lifetime of silicone implants. Soft surfaces suppress acute mechanical activation of myofibroblasts and reduce the activation of pro-fibrotic transforming growth factor (TGF-β1) – a process that is dependent on mechanical resistance of the environment. By understanding and manipulating myofibroblast mechanoperception, we will be able to devise better therapies to reduce scarring and support normal wound healing in organ and implant fibrosis.

Vincent Gabriel MD MSc FRCPC

Calgary Firefighters Burn Treatment Centre
Departments of Clinical Neurosciences, Pediatrics and Surgery
Alberta Children’s Hospital Research Institute
McCaig Institute for Bone and Joint Health

Dr. Gabriel received his Bachelor’s Degree in Medicine and MD from the University of Saskatchewan in 2000.  After completing his residency in the Physical Medicine and Rehabilitation Program at the University of Alberta (2000-2005), Dr. Gabriel then moved on to participate in the Rehabilitation Medicine Scientist Training Program at the University of Texas. He also became part of the Clinical Scholar’s Program at the University of Texas Southwestern Medical Centre at Dallas, and was awarded his MSc in 2010.  Dr. Gabriel now practices rehabilitation medicine after burns and polytrauma at the University of Calgary.  His interests include the biology of human scarring, the instrumented measurement techniques of human scar, cell based therapies for acute wound management and population based burn injury research.

"Clinical Challenges Managing Post Burn Fibrotic Scar"

Anne-Marie Pinel

Patient Research Partner

Anne-Marie is a congenital heart defect survivor and heart transplant recipient. She has undergone many heart surgeries as à child and as an adult, both in Ottawa and in Toronto. Her life has included many hospital visits, procedures, and of course, many scars.

By day, Anne-Marie teaches at an adult high school and assesses international credits and life experiences to help students attain their high school diploma. She has been teaching for the last 13 years. She also enjoys promoting organ donation and heart health through talks in school and community centers.

"That’s What she Said…about Scars"

Anne-Marie will discuss her journey through multiple surgeries and the scars they left behind. She will share the physical and mental considerations she faces, living à life with scars.

Maha AlSharqi MD MSc Candidate

Graduated with an MBBS degree from King Saud Bin Abdulaziz University Riyadh, Saudi Arabia. Currently, I’m completing my MSc degree in Dr.Anie Philip’s Lab at McGill University.

"Lung fibrosis: Regulation by CD109 in a Murine Model"

video unavailable

My research is centered on understanding the molecules that control lung fibrosis.  Using a murine model of pulmonary fibrosis, we have found that CD109, a TGF-beta co-receptor, plays a critical role in the lung. In this model, mice with CD109 deletion display excessive inflammatory responses and fibrosis of the lung, suggesting that targeting CD109 may be a promising approach for therapeutic intervention in lung fibrosis.